Analytic and numerical bootstrap for one-matrix model and “unsolvable” two-matrix model
نویسندگان
چکیده
A bstract We propose the relaxation bootstrap method for numerical solution of multi-matrix models in large N limit, developing and improving recent proposal H. Lin. It gives rigorous inequalities on single trace moments matrices up to a given “cutoff” order (length) moments. The combines usual loop equations positivity constraint correlation matrix have proof applicability this case one-matrix model where condition saddle point appears be equivalent presence supports eigenvalue distribution only real axis with positive weight. demonstrate efficiency our by solving analytically “unsolvable” two-matrix tr[A , B] 2 interaction quartic potentials, even solutions spontaneously broken discrete symmetry. region values computed allowed quickly shrinks increase cutoff, allowing precision about 6 digits generic couplings ? symmetric solutions. Our data are checked against known analytic results particular parameters.
منابع مشابه
the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran
آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...
15 صفحه اولFree Variables and the Two Matrix Model
We study the full set of planar Green's functions for a two-matrix model using the language of functions of non-commuting variables. Both the standard Schwinger-Dyson equations and equations determining connected Green's functions can be efficiently discussed and solved. This solution determines the master field for the model in the 'C-representation.
متن کاملThe Cauchy two-matrix model
We introduce a new class of two(multi)-matrix models of positive Hermitean matrices coupled in a chain; the coupling is related to the Cauchy kernel and differs from the exponential coupling more commonly used in similar models. The correlation functions are expressed entirely in terms of certain biorthogonal polynomials and solutions of appropriate Riemann–Hilbert problems, thus paving the way...
متن کاملExtended Triangular Operational Matrix For Solving Fractional Population Growth Model
In this paper, we apply the extended triangular operational matrices of fractional order to solve the fractional voltrra model for population growth of a species in a closed system. The fractional derivative is considered in the Caputo sense. This technique is based on generalized operational matrix of triangular functions. The introduced method reduces the proposed problem for solving a syst...
متن کاملSome properties of band matrix and its application to the numerical solution one-dimensional Bratu's problem
A Class of new methods based on a septic non-polynomial spline function for the numerical solution one-dimensional Bratu's problem are presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Associated boundary f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2022
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep06(2022)030